On Mining General Temporal Association Rules in a Publication Database
نویسندگان
چکیده
In this paper, we explore a new problem of mining general temporal association rules in publication databases. In essence, a publication database is a set of transactions where each transaction T is a set of items of which each item contains an individual exhibition period. The current model of association rule mining is not able to handle the publication database due to the following fundamental problems, i.e., (1) lack of consideration of the exhibition period of each individual item; (2) lack of an equitable support counting basis for each item. To remedy this, we propose an innovative algorithm Progressive-Partition-Miner (abbreviatedly as PPM) to discover general temporal association rules in a publication database. The basic idea of PPM is to first partition the publication database in light of exhibition periods of items and then progressively accumulate the occurrence count of each candidate 2-itemset based on the intrinsic partitioning characteristics. Algorithm PPM is also designed to employ a filtering threshold in each partition to early prune out those cumulatively infrequent 2-itemsets. Explicitly, the execution time of PPM is, in orders of magnitude, smaller than those required by the schemes which are directly extended from existing methods.
منابع مشابه
Introducing an algorithm for use to hide sensitive association rules through perturb technique
Due to the rapid growth of data mining technology, obtaining private data on users through this technology becomes easier. Association Rules Mining is one of the data mining techniques to extract useful patterns in the form of association rules. One of the main problems in applying this technique on databases is the disclosure of sensitive data by endangering security and privacy. Hiding the as...
متن کاملIMTAR: Incremental Mining of General Temporal Association Rules
Nowadays due to the rapid advances in the field of information systems, transactional databases are being updated regularly and/or periodically. The knowledge discovered from these databases has to be maintained, and an incremental updating technique needs to be developed for maintaining the discovered association rules from these databases. The concept of Temporal Association Rules has been in...
متن کاملA mining method for tracking changes in temporal association rules from an encoded database
Mining of association rules has become vital in organizations for decision making. The principle of data mining is better to use complicative primitive patterns and simple logical combination than simple primitive patterns and complex logical form. This paper overviews the concept of temporal database encoding, association rules mining. It proposes an innovative approach of data mining to reduc...
متن کاملAn efficient algorithm for incremental mining of temporal association rules
Article history: Received 14 September 2008 Received in revised form 5 March 2010 Accepted 8 March 2010 Available online 15 March 2010 This paper presents the concept of temporal association rules in order to solve the problem of handling time series by including time expressions into association rules. Actually, temporal databases are continually appended or updated so that the discovered rule...
متن کاملTemporal Mining Algorithms: Generalization and Performance Improvements
Temporal Mining Algorithms: Generalization and Performance Improvements Data mining consists of finding interesting trends or patterns in large datasets, in order to guide decisions about future activities. There is a general expectation that data mining tools should be able to identify these patterns in the data with minimal user input. The patterns identified by such tools can give a data ana...
متن کامل